Rank structures preserved by the QR-algorithm: The singular case
نویسندگان
چکیده
منابع مشابه
Rank structures preserved by the QR-algorithm: the singular case
In an earlier paper we introduced the classes of polynomial and rank structures, both of them preserved by applying a (shifted) QRstep on a matrix A. In the present paper we will further investigate the case of rank structures. We will show that even if A is a singular matrix, a new QR-iterate can be constructed having the same rank structure as the matrix A itself. To this end we will introduc...
متن کاملStructures preserved by the QR-algorithm
In this talk we investigate some classes of structures that are preserved by applying a QR step on a matrix A. We will handle two classes of such structures: the first we call polynomial structures, for example a matrix being Hermitian or Hermitian up to a rank one correction, and the second we call rank structures, which are encountered for example in all kinds of what we could call Hessenberg...
متن کاملthe role of task-based techniques on the acquisition of english language structures by the intermediate efl students
this study examines the effetivenss of task-based activities in helping students learn english language structures for a better communication. initially, a michigan test was administered to the two groups of 52 students majoring in english at the allameh ghotb -e- ravandi university to ensure their homogeneity. the students scores on the grammar part of this test were also regarded as their pre...
15 صفحه اولRank-Revealing QR Factorizations and the Singular Value Decomposition
T. Chan has noted that, even when the singular value decomposition of a matrix A is known, it is still not obvious how to find a rank-revealing QR factorization (RRQR) of A if A has numerical rank deficiency. This paper offers a constructive proof of the existence of the RRQR factorization of any matrix A of size m x n with numerical rank r. The bounds derived in this paper that guarantee the e...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2006
ISSN: 0377-0427
DOI: 10.1016/j.cam.2005.03.027